On Certain Results Associated with HurwitzLerch Zeta Function

Manju Sharma
Associate Professor, Department of Mathematics, Govt. College, Kota (Rajasthan), India

Abstract

In this paper certain results for multiparameter Hurwitz Zeta function are established. Some Euler type transforms associated with Gauss's hyper geometric functions are obtained. A few known and new integrals are also, obtained as special cases of our main results in this paper.

KEYWORDS: Beta functions, Generalized hyper geometric function, Wrights generalized hyper geometric function, Zeta function, Riemann Zeta function, Hurwitz- Lerch Zeta function.

Introduction and Preliminaries:

The familiar general Hurwitz-Lerch zeta function is defined as follows. Srivasatava [5]

$$
\begin{gather*}
\phi(z, s, a)=\sum_{l=0}^{\infty} \frac{z^{l}}{(l+a)^{s}} \tag{1.1}\\
\left(a \in C / Z_{0}^{-} ; s \in C \text { when }|\mathrm{z}|<1 ; R(s)>1 \text { when }|\mathrm{z}|=1\right)
\end{gather*}
$$

The integral representation of above defined Hurwitz Lerch zeta function is given by (Erdelyi et al [1] P.27, Equation 1.11(3).

$$
\begin{gather*}
\phi(z, s, a)=\frac{1}{\Gamma s} \int_{0}^{\infty} \frac{t^{s-1} e^{-a t}}{1-z e^{-t}} d t \tag{1.2}\\
\operatorname{Re}(a)>0, \operatorname{Re}(\mathrm{~s})>0 \text { when }|z| \leq 1(z \neq 1), \operatorname{Re}(\mathrm{s})>1 \text { when } \mathrm{z}=1 \text { at } a=0
\end{gather*}
$$

The Hurwitz-Lerch zeta function contains, as its special cases, the Riemann zeta function $\varsigma(s)$, the Hurwitz zeta function $\varsigma(s, a)$ and the Lerch zeta function $l_{s}(\xi)$ defined by

$$
\begin{aligned}
& \zeta(s)=\sum_{n=1}^{\infty} \frac{1}{n^{s}}=\phi(1, s, 1)=\zeta(s, 1)(\operatorname{Re}(s)>1) \\
& \zeta(s, a)=\sum_{n=0}^{\infty} \frac{1}{(n+a)^{s}}=\phi(1, s, a)\left(\operatorname{Re}(s)>1 ; a \in C \backslash Z_{0}^{-}\right), \\
& l_{s}(\xi)=\sum_{n=0}^{\infty} \frac{e^{2 n \pi i \xi}}{(n+1)^{s}}=\phi\left(e^{2 \pi i \xi}, s, 1\right)(\operatorname{Re}(s)>1 ; \xi \in R)
\end{aligned}
$$

A generalization of the Hurwitz-Lerch Zeta function is also studied by Goyal and Laddha [10] as follows

$$
\phi_{\mu}^{*}(z, s, a)=\sum_{n=0}^{\infty} \frac{(\mu)_{n} z^{n}}{n!(n+a)^{s}}
$$

Where $\operatorname{Re}(\mu)>0$ and $(\mu)_{n}$ is the Pochhammer symbol with relation $(\mu)_{n}=\frac{\Gamma(\mu+n)}{\Gamma(\mu)}$ and its integral representation

$$
\begin{align*}
& \phi_{\mu}^{*}(z, s, a)=\frac{1}{\Gamma s} \int_{0}^{\infty} t^{s-1} e^{-a t}\left(1-z e^{-t}\right)^{-\mu} d t \tag{1.3}\\
& \min \{R(a), R(s)\}>0 ;|z|<1
\end{align*}
$$

| ISSN: 2395-7852 | www.ijarasem.com | Impact Factor: 5.649 |Bimonthly, Peer Reviewed \& Referred Journal|
| Volume 7, Issue 3, May 2020 |

The generalized Hypergeometric function ${ }_{p} F_{q}$ is defined as follows:

$$
{ }_{p} F_{q}\left[\begin{array}{c}
\alpha_{1}, \ldots \ldots \ldots, \alpha_{p} ; \tag{1.4}\\
\beta_{1}, \ldots \ldots, \beta_{q} ;
\end{array}\right]=\sum_{n=0}^{\infty} \frac{\left(\alpha_{1}\right)_{n} \ldots \ldots \ldots\left(\alpha_{p}\right)_{n} z^{n}}{\left(\beta_{1}\right)_{n} \ldots \ldots \ldots\left(\beta_{q}\right)_{n} n!}
$$

Where $(\lambda)_{n}$ is the Pochhammer symbol. The series in (1.4) is known as generalized Gauss series, or simply, the generalized hypergeometric series. Here p and q are positive integers or zero and we assume that the variable z , the numerator parameter $\alpha_{1}, \ldots \ldots, \alpha_{p}$ and the denominator parameter $\beta_{1}, \ldots \ldots, \beta_{q}$ may be complex values, provided that

$$
\beta_{j} \neq 0,-1,-2 \ldots \ldots . ;(j=1, \ldots \ldots q)
$$

The Fox-Wright generalized hypergeometric function ${ }_{p} \psi_{q}^{*}$ which is generalization of the familiar hypergeometric function ${ }_{p} F_{q}$ defined by Erdelyi et al.[1] as

$$
{ }_{p} \psi_{q}^{*}\left[\begin{array}{l}
\left(a_{1}, A_{1}\right), \ldots \ldots,\left(a_{p}, A_{p}\right) ; \tag{1.5}\\
\left(b_{1}, B_{1}\right), \ldots \ldots \ldots,\left(b_{q}, B_{q}\right) ;
\end{array}\right]=\sum_{n=0}^{\infty} \frac{\left(a_{1}\right)_{A_{1} n} \ldots . .\left(a_{p}\right)_{A_{p} n} z^{n}}{\left(b_{1}\right)_{B_{1} n} \ldots \ldots\left(b_{q}\right)_{B_{p} n} n!}
$$

At $A_{i}=1(i=1, \ldots \ldots, p), B_{j}=1(j=1, \ldots \ldots, q)$ it reduces to generalized hypergeometric function ${ }_{p} F_{q}$.
Further generalization of the above defined Hurwitz-Lerch Zeta function $\phi_{\mu}(z, s, a)$ and $\phi_{\mu}^{*}(z, s, a)$ is recently studied in the following form by Garg et al [7];

$$
\begin{equation*}
\phi_{\lambda, \mu, \gamma}(z, s, a)=\sum_{n=0}^{\infty} \frac{(\lambda)_{n}(\mu)_{n} \quad z^{n}}{(\gamma)_{n} n!(n+a)^{s}} \tag{1.6}
\end{equation*}
$$

and $\phi_{\lambda, \mu, \gamma}(z, s, a)=\frac{1}{\Gamma s} \int_{0}^{\infty} t^{s-1} e^{-a t}{ }_{2} F_{1}\left[\begin{array}{c}\lambda, \mu \\ \gamma\end{array} ; z e^{-t}\right] d t$
where $\lambda, \mu \in C, a \in C / Z_{0}^{-}, s \in C$ when $|z|<1 \operatorname{Re}(s+v-\lambda-\mu)$ when $|z|=1$
Lin and Srivastava [9] also extended the Hurwitz-Lerch zeta function in the following form.

$$
\begin{align*}
\phi_{\mu, \gamma}^{\rho, \sigma}(z, s, a)= & \sum_{n=0}^{\infty} \frac{(\mu)_{\rho n} z^{n}}{(\gamma)_{\sigma n}(n+a)^{s}} \\
& =\frac{1}{\Gamma s} \int_{0}^{\infty} t^{s-1} e^{-a t}{ }_{2} \psi_{1}^{*}\left[\begin{array}{c}
(\mu, \rho)(1,1) \\
(\gamma, \sigma)
\end{array} z e^{-t}\right] d t \tag{1.8}
\end{align*}
$$

$$
\mu \in C ; a, \lambda \in C \mid Z_{0}^{-} ; \rho, \sigma \in R^{+} ; \rho<\sigma \text { when } s, z \in C ; \rho=\sigma
$$

and $s \in C$ when $|z|<\delta=\rho^{-p} \sigma^{\sigma} ; \rho=\sigma$ and $\operatorname{Re}(s-\mu+v)>1$ when $|z|=\delta$
Bin-Saad [8] established the following generating function for the Hurwitz - Lerch zeta function defined in (1.1)

$$
\begin{align*}
& \sum_{n=0}^{\infty} \frac{(\lambda)_{n}}{n!} \phi(z, s+n, a) t^{n}=\sum_{n=0}^{\infty} \frac{z^{n}}{(n+a)^{s-\lambda}(n+a-t)^{\lambda}}=V_{\lambda}(z ; t, s, a) \tag{1.9}\\
& \quad|t|<|a|
\end{align*}
$$

When $t \rightarrow t / \lambda$ and $|\lambda| \rightarrow \infty,(1.8)$ becomes
$\sum_{n=0}^{\infty} \phi(z, s+n, a) \frac{t^{n}}{n!}=\sum_{n=0}^{\infty} \frac{z^{n}}{(n+a)^{s}} \exp \left(\frac{t}{n+a}\right)=\psi(z, t, s, a),|t|<\infty$
The extension of Hurwitz Lerch zeta function in multiparameter is defined by Srivastava [5] as follows.
| Volume 7, Issue 3, May 2020 |

$$
\begin{align*}
& \phi \phi_{\left(\lambda_{1}, \ldots ., \lambda_{p} ; \mu_{1}, \ldots ., \mu_{q}\right)}^{\left(\rho_{1}, \ldots, \rho_{p} ; \sigma_{1}, \ldots ., \sigma_{q}\right)}(z, s, a)=\sum_{n=0}^{\infty} \frac{\prod_{j=1}^{p}\left(\lambda_{j}\right)_{n \rho_{j}}}{n!\prod_{j=1}^{q}\left(\mu_{j}\right)_{n \sigma_{j}}} \bullet \frac{z^{n}}{(n+a)^{s}} \tag{1.11}\\
& p, q \in N_{0} ; \lambda_{j} \in C(j=1, \ldots ., p) ; \quad a, \mu_{j} \in c / z_{0}^{-}(j=1, \ldots, q) \\
& \rho_{j}, \sigma_{k} \in R^{+}(j=1, \ldots, p, k=1, \ldots ., q)
\end{align*}
$$

They also introduced the following generating relations associated with multiparameter Hurwitz- Lerch zeta function defined in (1.10)

$$
\begin{aligned}
& \sum_{n=0}^{\infty} \frac{(\lambda)_{n}}{n!} \phi_{\left(\lambda_{1}, \ldots, \lambda_{p} ; \mu_{1}, \ldots, \mu_{q}\right)}^{\left(\rho_{1}, \ldots, \rho_{;} ; \sigma_{1}, \ldots, \sigma_{q}\right)}(z, s+n, a) t^{n} \\
& =\sum_{k=0}^{\infty} \frac{E_{k} z^{k}}{(k+a)^{s-\lambda}(k+a-t)^{\lambda}}=\Omega_{\lambda}(z, t ; s, a) \quad|t|<|a|
\end{aligned}
$$

where

$$
\begin{equation*}
E_{k}=\frac{\prod_{j=1}^{p}\left(\lambda_{j}\right)_{k \rho_{j}}}{k!\prod_{j=1}^{q}\left(\mu_{j}\right)_{k \sigma_{j}}} \tag{1.13}
\end{equation*}
$$

$k \in N_{0}$,

The truncated form of the generating function $\Omega_{\lambda}(z, t ; s, a)$ is also defined by Srivastava [6].

$$
\begin{array}{ll}
\Omega_{\lambda}^{0, r}(z, t ; s, a)=\sum_{k=0}^{r} \frac{E_{k} z^{k}}{(k+a)^{s-\lambda}(k+a-t)^{\lambda}} \quad, r \in N_{0} \\
\Omega_{\lambda}^{r+1, \infty}(z, t ; s, a)=\sum_{r+1}^{\infty} \frac{E_{k} z^{k}}{(k+a)^{s \lambda}(k+a-t)^{\lambda}} \quad, r \in N_{0}
\end{array}
$$

Which satisfy the following decomposition formula :

$$
\begin{equation*}
\Omega_{\lambda}^{(0, r)}(z, t ; s, a)+\Omega_{\lambda}^{(r+1, \infty)}(z, t ; s, a)=\Omega_{\lambda}(z, t ; s, a) \tag{1.14}
\end{equation*}
$$

The integral representation formula for this generating functions is defined as follows (Srivasatava [5], [6]):

$$
\begin{gather*}
\Omega_{\lambda}(z, \omega ; s, a)=\frac{1}{\Gamma s} \int_{0}^{\infty} t^{s-1} e^{-a t}{ }_{p} \psi_{q}{ }_{q}^{*}\left[\begin{array}{l}
\left(\lambda_{1}, \rho_{1}\right), \ldots .,\left(\lambda_{p}, \rho_{p}\right) \\
\left(\mu_{1}, \sigma_{1}\right), \ldots \ldots,\left(\mu_{q}, \sigma_{q}\right)
\end{array}, z e^{-t}\right]_{1} F_{1}(\lambda ; s ; \omega t) d t \\
\text { where }\{\min R(a), R(s)\}>0 \tag{1.15}
\end{gather*}
$$

Results Required

The following results are required here [3, pp 181-184]:
For $f(t)=(\eta-\xi)+\rho(t-\xi)+\sigma(\eta-t)$ we have,

$$
\begin{aligned}
& \int_{\xi}^{\eta} \frac{(t-\xi)^{v}(\eta-t)^{\mu-1}}{[f(t)]^{v+\mu+1}}{ }_{2} F_{1}\left[\begin{array}{l}
\left.\zeta, b ; \frac{(1+\sigma)(\eta-t)}{\mu ;}\right] \\
\mu ;(t)
\end{array} d t\right. \\
& \quad=\frac{(\eta-\xi)^{-1}(1+\rho)^{-v-1}(1+\sigma)^{\mu} \Gamma(\mu) \Gamma(v+1) \Gamma(v+\mu-\zeta-b+1)}{\Gamma(v+\mu-\zeta+1) \Gamma(v+\mu-b+1)}
\end{aligned}
$$

| Volume 7, Issue 3, May 2020 |

$$
\begin{align*}
& \operatorname{Re}(v)>-1, \operatorname{Re}(\mu)>0, \operatorname{Re}(v+\mu-b+1)>0 ; \tag{1.16}\\
& \int_{\xi}^{\eta} \frac{(t-\xi)^{\mu}(\eta-t)^{\mu}}{[f(t)]^{2 \mu+2}}{ }_{2} F_{1}\left[\begin{array}{c}
\zeta, b ; \\
\frac{1}{2}(\zeta+b+1) ;
\end{array} \frac{(1+\sigma)(\eta-t)}{f(t)}\right] d t \\
& =\frac{\pi \Gamma(\mu+1) \Gamma\left(\frac{\zeta+b+1}{2}\right) \Gamma\left(\mu+\frac{3-\zeta-b}{2}\right)}{2^{2 \mu+1}(\eta-\xi)[(1+\sigma)(1+\rho)]^{\mu+1} \Gamma\left(\frac{(\xi+1)}{2}\right) \Gamma\left(\frac{(b+1)}{2}\right)} \times \frac{1}{\Gamma\left(\mu+\frac{3-\zeta}{2}\right) \Gamma\left(\mu+\frac{3-b}{2}\right)} \\
& \operatorname{Re}(\mu)>-1, \operatorname{Re}(3-\zeta-b+2 \mu)>0 ; \tag{1.17}\\
& \int_{\xi}^{\eta} \frac{(t-\xi)^{\mu-\nu}(\eta-t)^{\mu-1}}{[f(t)]^{\mu \mu \nu+1}}{ }_{2} F_{1}\left[\begin{array}{c}
\zeta, 1-\xi ;(1+\sigma)(\eta-t) \\
v \quad ;
\end{array}\right] d t \\
& =\frac{\pi \Gamma(v) \Gamma(\mu) \Gamma(\mu-v+1)}{2^{2 \mu-1}(\eta-\xi)(1+\rho)^{1+\mu-v}(1+\sigma)^{\mu} \Gamma\left(\frac{1-v-\zeta}{2}\right) \Gamma\left(\frac{v+\zeta}{2}\right)} \times \frac{1}{\Gamma\left(\mu+\frac{\zeta-v+1}{2}\right) \Gamma\left(\mu+\frac{2-\zeta-v}{2}\right)} \\
& \operatorname{Re}(\mu)>0 ; \operatorname{Re}(\mu-v+1)>0 ; \tag{1.18}
\end{align*}
$$

We have established the following results involving functions related to Hurwtiz-Lerch Zeta functions.

2.Main Results

For

$$
f(t)=(\eta-\xi)+\rho(t-\xi)+\sigma(\eta-t), h(t)=(t-\xi)^{\gamma}[f(t)]^{-\gamma}
$$

$$
v(t)=(t-\xi)^{\gamma}(\eta-t)^{\gamma}[f(t)]^{-2 \gamma}
$$

and for the sequence of coefficient $\left\{E_{k}\right\} ; k \in N_{0}$ the following main results are establish here

Result-1

$$
\begin{align*}
& \int_{\xi}^{\eta} \frac{(t-\xi)^{\nu}(\eta-t)^{\mu-1}}{[f(t)]^{0+\mu+1}}{ }_{2} F_{1}\left[\begin{array}{l}
\zeta, b ; \frac{(1+\sigma)(\eta-t)}{[f(t)]} \\
\mu ;
\end{array}\right] \Omega_{\lambda}(z, \omega h(t), s, a) d t \\
& =\frac{(\eta-\xi)^{-1}(1+\rho)^{-v-1}(1+\sigma)^{\mu} \Gamma(\mu) \Gamma(v+1) \Gamma(v+\mu-\zeta-b+1)}{\Gamma(v+\mu-\zeta+1) \Gamma(v+\mu-b+1)} \\
& \sum_{k=0}^{\infty} \frac{E_{k} z^{k}}{(a+k)^{s}}{ }_{3} \psi_{2}^{*}\left[\begin{array}{c}
(\lambda, 1),(v+1, \gamma),(v+\mu-\zeta-b+1, \gamma) ;
\end{array} \frac{\omega}{(v+\mu-\zeta+1, \gamma),(v+\mu-b+1, \gamma) ;} \overline{(a+k)(1+\rho)^{\gamma}}\right] \tag{2.1}
\end{align*}
$$

where $\eta \neq \xi, \min \{R(v), R(\mu)\}>0 ; \gamma>0$
| Volume 7, Issue 3, May 2020 |

Result-2

$$
\begin{gather*}
\int_{\xi}^{\eta} \frac{(t-\xi)^{\mu}(\eta-t)^{\mu}}{[f(t)]^{2 \mu+2}}{ }_{2} F_{1}\left[\begin{array}{l}
\zeta, b \\
\frac{1}{2}(\zeta+b+1) ;
\end{array} ; \frac{(1+\sigma)(\eta-t)}{f(t)}\right] \Omega_{\lambda}(z, \omega v(t), s, a) d t \\
=\frac{\pi \Gamma(\mu+1) \Gamma\left(\frac{(\zeta+b+1)}{2}\right) \Gamma\left(\mu+\frac{3-\zeta-b}{2}\right)}{2^{2 \mu}(\eta-\xi)(1+\sigma)^{\mu+1}(1+\rho)^{\mu+1} \Gamma\left(\frac{\zeta+1}{2}\right) \Gamma\left(\frac{b+1}{2}\right) \Gamma\left(\mu+\frac{3-\zeta}{2}\right) \Gamma\left(\mu+\frac{3-b}{2}\right)} \\
\sum_{k=0}^{\infty} \frac{E_{k} z^{k}}{(a+k)^{s}{ }_{2} \psi_{2}^{*}\left[(\mu+1, \gamma),\left(\mu+\frac{3-\zeta-b}{2}, \gamma\right) ;\right.}\left[\begin{array}{l}
\left(\mu+\frac{3-\zeta}{2}, \gamma\right),\left(\mu+\frac{3-b}{2}, \gamma\right) ; 4^{\gamma}(a+k)(1+\sigma)^{\gamma}(1+\rho)^{\gamma}
\end{array}\right] \tag{2.2}
\end{gather*}
$$

where $\eta \neq \xi ; R(\mu)>0$

Result-3

$$
\left.\begin{array}{l}
\int_{\xi}^{\eta} \frac{(t-\xi)^{\mu-v}(\eta-t)^{\mu-1}}{[f(t)]^{2 \mu-v+1}}{ }_{2} F_{1}\left[\begin{array}{c}
\zeta, 1-\zeta ;(1+\sigma)(\eta-t) \\
v
\end{array}\right] \Omega_{\lambda}(z, \omega v(t), s, a) d t \\
=\frac{\pi(t)}{2^{2 \mu-1}(\eta-\xi)(1+\rho)^{\mu-v+1}(1+\sigma)^{\mu} \Gamma\left(\frac{1-v-\zeta}{2}\right) \Gamma\left(\frac{v+\zeta}{2}\right) \Gamma\left(\mu+\frac{\zeta-v+1}{2}\right) \Gamma\left(\mu+\frac{2-\zeta-v}{2}\right)} \\
\sum_{k=0}^{\infty} \frac{E_{k} z^{k}}{(a+k)^{s}}{ }_{2} \psi_{2}^{*}\left[(\mu+1, \gamma),\left(\mu+\frac{3-\zeta-b}{2}, \gamma\right) ;\right. \tag{2.3}\\
\left(\mu+\frac{3-\zeta}{2}, \gamma\right),\left(\mu+\frac{3-b}{2}, \gamma\right) ; 4^{\gamma}(a+k)(1+\sigma)^{\gamma}(1+\rho)^{\gamma}
\end{array}\right] .
$$

where $\eta \neq \xi, \min [R\{\mu-v\}, R(\mu)]>0 ; \gamma>0$

OUTLINES OF PROOFS

Proof of (2.1):

To prove the result in (2.1) first we denote its LHS by I_{1}, i.e.
$I_{1}=\int_{\xi}^{\eta} \frac{(t-\xi)^{v}(\eta-t)^{\mu-1}}{[f(t)]^{\nu+\mu+1}}{ }_{2} F_{1}\left[\begin{array}{c}\zeta, b ; \frac{(1+\sigma)(\eta-t)}{f(t)} \\ \mu ;\end{array} \Omega_{\lambda}\left[z, \omega(t-\xi)^{\gamma}(\eta-t)^{\gamma}[f(t)]^{-2 \gamma}, s, a\right] d t\right.$
Now on using the definition of Ω_{λ} given in (1.12) and using the binomial expansion theorem and then on changing the order of integration and summation we have

$$
I_{1}=\sum_{n, k=0}^{\infty} \frac{E_{k} z^{k}(\omega)^{n}(\lambda)_{n}}{(a+k)^{s+n} n!} \int_{\xi}^{\eta} \frac{(t-\xi)^{v+\gamma n}(\eta-t)^{\mu+n \gamma-1}}{[f(t)]^{v+\mu+1+2 \gamma n}}{ }_{2} F_{1}\left[\begin{array}{c}
\zeta, \quad b ;(1+\sigma)(\eta-t) \\
\mu ;
\end{array}\right] d t
$$

Now evaluating the inner integral with the help the of (1.16) and interpretate the n - series in view of (1.5) we at once arrive at the desired result in (2.1).

To prove the results of (2.2) and (2.3) we follow the similar lines as to prove the result (2.1) and using (1.17), (1.18) for results (2.2) and (2.3) respectively.

| ISSN: 2395-7852 | www.ijarasem.com | Impact Factor: 5.649 |Bimonthly, Peer Reviewed \& Referred Journal|

3. Particular cases:

1. If in results (2.1), (2.2) and (2.3), we take $p=1, \rho_{1}=1, \lambda=1$ and $q=0$ then we obtained the results involving $V_{\lambda}(z, t ; s, a)$ defined in (1.8).
2. If we assume in results (2.1), (2.2) and (2.3) then these results reduce to the known results due to Jaimini and Somani [4,pp. 6-7,eqs-(2.1)-(2.3)] respectively.

References:

[1]. Erdelyi A, Mangus W, Oberhettinger F, and Tricomi FG; Higher Transcendetnal functions, Volume I. McGraw Hill Book company, New York 1953.
[2]. Erdelyi A, Mangus W, Oberhettinger F, and Tricomi FG; Tables of integral transforms Volume II, Mc Graw Hill Book company, New York, 1954.
[3] Jaimini B B ;Investigations in multiple Mellin Barnes Type contour Integrals and transform calculus Ph.D. thesis, University of Rajasthan, Jaipur (1995)
[4] Jaimini B B. and Somani R P ; On certain class of Euler type integrals involving extended and multiparameter Hurwitz Lerch Zeta functions. South East Assian J. Math. Math Sc. Vol. 12 No.1, 1-10 (2016) .
[5]. Srivastava H M ; Generating relations and other results associated with some families of the extended Huzwitz lerch Zeta function. Springer plus, 2(67), (2013).
[6] Srivasatava H M ;Some properties and results involving the zeta and associated functions. Functional Analysis, Approximation and computation 7(2) : 89-133, (2015).
[7] Garg M, Jain K and Kalla S.L.;A further study of general Hurwitz lerch Zeta function, Algebras groups Geom, 25:311-319, (2008).
[8] Bin Saad M.G.; Sums and partial sums of double power series associated with the generalized zeta function and their N-fractional calculus, Math. J. Okayama Univ. 49:37-529, (2007).
[9] Lin S D and Srivasatava H M ; Some families of the Hurwitz-lerch Zeta function and associated fractional derivative and other integral representation. Appl.Maths Comput, 154:725-733, (2004).
[10] Goyal S P; and Laddha R K; On the generalized zeta function and the generalized Lambert function. Ganita Sandesh, 11:99-108,(1997)

