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ABSTRACT: In complex analysis, Mittag-Leffler's theorem concerns the existence of meromorphic functions with 

prescribed poles. Conversely, it can be used to express any meromorphic function as a sum of partial fractions. It is sister 

to the Weierstrass factorization theorem, which asserts existence of holomorphic functions with prescribed zeros. 

The theorem is named after the Swedish mathematician Gösta Mittag-Leffler who published versions of the theorem in 

1876 and 1884.
[1][2][3]

 Fractional calculus is a branch of mathematical analysis that studies the several different 

possibilities of defining real number powers or complex number powers of the differentiation operator  
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I.INTRODUCTION 

This paper deals with the study of a generalized function of Mittag-Leffler type. Various properties including usual 

differentiation and integration, Euler(Beta) transforms, Laplace transforms, Whittaker transforms, generalized 

hypergeometric series form with their several special cases are obtained and relationship with Wright hypergeometric 

function and Laguerre polynomials is also established. 

 

The generalized fractional integrations of the generalized Mittag-Leffler type function (GMLTF) are established in this 

paper. The results derived in this paper generalize many results available in the literature and are capable of generating 

several applications in the theory of special functions. The solutions of a generalized fractional kinetic equation using the 

Sumudu transform is also derived and studied as an application of the GMLTF. Fractional calculus is one of the 

prominent branch of applied mathematics that deals with non-integer order derivatives and integrals (including complex 

orders), and their applications in almost all disciplines of science and engineering [18–22]. In this line, the use of special 

functions in connection with fractional calculus also studied widely [23–27]. For the basics of fractional calculus and its 

related literature, interesting readers can be referred to as Kiryakova [28], Miller and Ross [29], and Srivastava et al. [30]. 

The generalized fractional integrations of the generalized Mittag-Leffler type function is studied in this paper. The 

obtained results are expressed in terms of the generalized Wright hypergeometric function and generalized 

hypergeometric functions. To show the potential application of GMLTF, the solutions of fractional kinetic equations are 

derived with the help of Sumudu transform. The results obtained in this study have significant importance as the solution 

of the equations are general and can derive many new and known solutions of FKEs involving various type of special 

functions. 
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II.DISCUSSION 

The paper is devoted to the study of the function E 
γ
 ρ,μ(z) defined for complex ρ, μ, γ (Re(ρ) > 0) by which is a 

generalization of the classical Mittag-Leffler function E ρ,μ(z) and the Kummer confluent hypergeometric function Φ(γ, 

μ; z). The properties of E 
γ
 ρ,μ(z) including usual differentiation and integration, and fractional ones are proved. Further 

the integral operator with such a function kernel is studied in the space L(a, b). Compositions of the Riemann–Liouville 

fractional integration and differentiation operators with E 
γ
 ρ,μ,ω;a+ are established. An analogy of the semigroup property 

for the composition of two such operators with different indices is proved, and the results obtained are applied to 

construct the left inversion operator to the operator E 
γ
 ρ,μ,ω;a+. Since, for γ = 0, E 

0
 ρ,μ,ω;a+ coincides with the Riemann–

Liouville fractional integral of order μ, the above operator and its inversion can be considered as generalized fractional 

calculus operators involving the generalized Mittag-Leffler function E 
γ
 ρ,μ(z) in the kernels. Similar assertions are 

presented for the integral operators containing the Mittag-Leffler and Kummer functions, E ρ,μ(z) and Φ(γ, μ; z), in the 

kernels, and applications are given to obtain solutions in closed form of the integral equations of the first kind. The 

Mittag-Leffler function has gained importance and popularity during the last one and a half decades due to its direct 

involvement in the problems of physics, biology, engineering, and applied sciences. Mittag-Leffler function naturally 

occurs as the solution of fractional order differential equations and fractional order integral equations. A special role of 

the Mittag-Leffler functions in the fractional calculus has been discovered by many scientists from different view points. 

In 1899, Mittag-Leffler began the publication of a series of articles under the common title ‘Sur la representation 

analytique d’une branche uniforme d’une fonction monogene’ (‘On the analytic representation of a single-valued branch 

of a monogene function’) published mainly at ‘Acta Mathematica’. His research was connected with the solution of a 

problem of analytic continuation of complex functions represented by power series. The function which he used for the 

solution of this problem was named later as the Mittag-Leffler function. Following the line of Mittag-Leffler’s 

consideration, several investigations related to this function, its generalizations and related special functions have been 

done at the beginning of the 20th century (see, e.g., review article [10] and references therein). Probably for the first time, 

an interest to this function from the application appeared due to representation in terms of this function the solution of the 

Abel integral equation of the second order made by Hille and Tamarkin [12]. Nowadays this function and its numerous 

generalizations are used in different fractional models (see monographs listed above). A special role of the MittagLeffler 

function was pointed out by Kiryakova [23, 24], who included it into the class of special functions for fractional calculus. 

Moreover, based on the role of the Mittag-Leffler function in applications, Mainardi [25] called it ‘the queen of fractional 

calculus’. Due to this exceptional role of the collection of Mittag-Leffler functions, any new exact result involving these 

functions seem very interesting. This paper is devoted to the properties of the so-called Marichev–Saigo–Maeda 

generalized fractional operator, i.e. integral transform of the Mellin convolution type with the Appell (or Horn) function 

F3. This operator was introduced nearly 40 years ago by Marichev [26] and studied in some recent papers, including the 

papers by Saigo and Maeda [39] and, Saigo and Saxena.  

III.RESULTS 

In applied mathematics and mathematical analysis, a fractional derivative is a derivative of any arbitrary order, real or 

complex. Its first appearance is in a letter written to Guillaume de l'Hôpital by Gottfried Wilhelm Leibniz in 

1695.
[2]

  Around the same time, Leibniz wrote to one of the Bernoulli brothers describing the similarity between the 

binomial theorem and the Leibniz rule for the fractional derivative of a product of two functions. Fractional calculus was 

introduced in one of Niels Henrik Abel's early papers
[3]

 where all the elements can be found: the idea of fractional-order 

integration and differentiation, the mutually inverse relationship between them, the understanding that fractional-order 

differentiation and integration can be considered as the same generalized operation, and even the unified notation for 

differentiation and integration of arbitrary real order.
[4]

 Independently, the foundations of the subject were laid 

by Liouville in a paper from 1832.
[5][6][7]

 The autodidact Oliver Heaviside introduced the practical use of fractional 

differential operators in electrical transmission line analysis circa 1890.
[8]

 The theory and applications of fractional 

calculus expanded greatly over the 19th and 20th centuries, and numerous contributors have given different definitions 

for fractional derivatives and integrals.
[9]

 The classical form of fractional calculus is given by the Riemann–Liouville 

integral, which is essentially what has been described above. The theory of fractional integration for periodic 

functions (therefore including the "boundary condition" of repeating after a period) is given by the Weyl integral. It is 

defined on Fourier series, and requires the constant Fourier coefficient to vanish (thus, it applies to functions on the unit 

circle whose integrals evaluate to zero). The Riemann–Liouville integral exists in two forms, upper and lower. Unlike 

classical Newtonian derivatives, fractional derivatives can be defined in a variety of different ways that often do not all 

lead to the same result even for smooth functions. Some of these are defined via a fractional integral. Because of the 

incompatibility of definitions, it is frequently necessary to be explicit about which definition is used. In 2013–2014 

Atangana et al. described some groundwater flow problems using the concept of a derivative with fractional 

order.
[35][36]

 In these works, the classical Darcy law is generalized by regarding the water flow as a function of a non-

integer order derivative of the piezometric head. This generalized law and the law of conservation of mass are then used 
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to derive a new equation for groundwater flow. This equation
 
has been shown useful for modeling contaminant flow in 

heterogenous porous media.
[37][38][39]

 

Atangana and Kilicman extended the fractional advection dispersion equation to a variable order equation. In their work, 

the hydrodynamic dispersion equation was generalized using the concept of a variational order derivative. The modified 

equation was numerically solved via the Crank–Nicolson method. The stability and convergence in numerical 

simulations showed that the modified equation is more reliable in predicting the movement of pollution in deformable 

aquifers than equations with constant fractional and integer derivatives
[40]

 In the fields of dynamical systems and control 

theory, a fractional-order system is a dynamical system that can be modeled by a fractional differential 

equation containing derivatives of non-integer order.
[1]

 Such systems are said to have fractional dynamics. Derivatives 

and integrals of fractional orders are used to describe objects that can be characterized by power-

law nonlocality,
[2]

 power-law long-range dependence or fractal properties. Fractional-order systems are useful in studying 

the anomalous behavior of dynamical systems in physics, electrochemistry, biology, viscoelasticity and chaotic 

systems.
[1]

 Exponential laws are a classical approach to study dynamics of population densities, but there are many 

systems where dynamics undergo faster or slower-than-exponential laws. In such case the anomalous changes in 

dynamics may be best described by Mittag-Leffler functions.
[4]

 

Anomalous diffusion is one more dynamic system where fractional-order systems play significant role to describe the 

anomalous flow in the diffusion process. 

Viscoelasticity is the property of material in which the material exhibits its nature between purely elastic and pure fluid. 

In case of real materials the relationship between stress and strain given by Hooke's law and Newton's law both have 

obvious disadvances. So G. W. Scott Blair introduced a new relationship between stress and strain 

RESULTS 

A fractional-order integrator or just simply fractional integrator is an integrator device that calculates the fractional-order 

integral or derivative (usually called a differintegral) of an input. Differentiation or integration is a real or complex 

parameter. The fractional integrator is useful in fractional-order control where the history of the system under control is 

important to the control system output. Fractional-order control (FOC) is a field of control theory that uses the fractional-

order integrator as part of the control system design toolkit. The use of fractional calculus (FC) can improve and 

generalize well-established control methods and strategies. 
[1]

 

The fundamental advantage of FOC is that the fractional-order integrator weights history using a function that decays 

with a power-law tail. The effect is that the effects of all time are computed for each iteration of the control algorithm. 

This creates a 'distribution of time constants,' the upshot of which is there is no particular time constant, or resonance 

frequency, for the system. 

Fractional-order control shows promise in many controlled environments that suffer from the classical problems of 

overshoot and resonance, as well as time diffuse applications such as thermal dissipation and chemical mixing. 

Fractional-order control has also been demonstrated to be capable of suppressing chaotic behaviors in mathematical 

models of, for example, muscular blood vessels.
[3]

 

Initiated from the 80's by the Pr. Oustaloup's group, the CRONE approach is one of the most developed control-system 

design methodologies that uses fractional-order operator properties. 

When l’Hˆopital1 asked what would be the result of half-differentiating a function, Leibnitz (1695)2 replied that “It leads 

to a paradox, from which one day useful consequences will be drawn.” Heaviside’s (1871)3 view was “There is universe 

of mathematics lying in between the complete differentiations and integrations, and that fractional operators push 

themselves forward sometimes, and are just as real as others.” The process by which we arrive at fractional operators is 

somewhat like what was done for numbers. First we had positive integers, and then followed the zero, fractions, 

irrational, negative, and complex numbers. A scalar α raised to a fractional power such as 1/2 is understood in the context 

of the law of exponents, α nα m = α n+m, where n and m are numbers.  

IV.CONCLUSIONS 

Although α n, where n is a positive integer, is defined by α being multiplied by itself (n − 1) times, α 1/2 is defined by α 

1/2α 1/2 = 1. √ 2 is merely a notation, but α 1/2 can be used with ease in algebraic manipulations, and can participate in 

binary operations such as addition, subtraction, multiplication, division, and exponentiation. Though the use of fractional 

operators and derivatives is wide-spread, by choice we will restrict ourselves to the areas of engineering related to 

mechanical systems. For convenience we will also assume that the numbers and functions treated here are real, although 

generalizations to complex numbers exist. 
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